2001 Vol. 3, No. 8 1169–1171

Enantioselective Copper-Catalyzed Allylic Alkylation with Dialkylzincs Using Phosphoramidite Ligands

Hinke Malda, Anthoni W. van Zijl, Leggy A. Arnold, and Ben L. Feringa*,†

Department of Organic and Molecular Inorganic Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

feringa@chem.rug.nl

Received January 30, 2001

ABSTRACT

Br + Et₂Zn
$$\frac{2 \text{ mol}\% \text{ L}^*,}{1 \text{ mol}\% \text{ CuBr.Me}_2\text{S}}$$

$$\frac{1 \text{ mol}\% \text{ CuBr.Me}_2\text{S}}{\text{diglyme},}$$

$$-40^{\circ}\text{C}, 18\text{h}$$

$$77\% \text{ e.e.}$$

$$1a (S, R, R)$$

In the presence of a catalytic amount of copper salts, cinnamyl halides undergo a regio- and enantioselective S_N2' alkylation with dialkylzincs using chiral phosphoramidites as ligands. An $S_N2':S_N2$ ratio of 85:15 and enantiomeric excesses up to 77% for the chiral S_N2' products are found. Variation of solvent and reaction temperature revealed that the highest regio- and enantioselectivities are found using coordinating solvents of $-40~^{\circ}C$.

Transition metal mediated carbon—carbon bond formations are among the most versatile synthetic methodologies in contemporary organic chemistry. In recent years, the alkylation of allylic substrates has attracted much attention in approaches toward branched, chiral products. Several highly selective palladium-catalyzed allylic substitutions using malonates as carbon nucleophiles have been described. Nature 1,3,4 Van Koten and Bäckvall reported the first asymmetric coppercatalyzed allylic alkylation using Grignard reagents albeit

with moderate enantioselectivities. ⁵ Recently, Dübner and Knochel⁶ introduced a highly regioselective copper-catalyzed alkylation method with dineopentylzinc employing chiral ferrocenylamines as ligands resulting in $S_{\rm N}2'$ products with up to 98% ee.

However, highly enantioselective allylic alkylation with nonsterically demanding (linear) alkylzinc reagents remains a major challenge. In this Letter, we report an asymmetric copper(I)-catalyzed allylic alkylation with dialkylzincs and cinnamyl bromide resulting in ee's up to 77%. This selectivity is achieved using 1 mol % of catalyst, prepared in situ from CuBr·Me₂S and a chiral phosphoramidite ligand (1a, Figure 1). These ligands are known to give excellent

Heidelberg, 1999.

[†] Fax: Int. code +(50) 3634296. Tel.: Int. code +(50) 3634278. (1) (a) Beller, M.; Bolm, C. In *Transition Metals for Organic Synthesis*; Wiley: VCH: Weinheim, 1998. (b) Trost, B. M.; Van Vranken, D. L. *Chem. Rev.* **1996**, 96, 395–422. (c) *Catalytic Asymmetric Synthesis*; Ojima, I., Ed.; VHC: New York, 1993. (d) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, Y. *Comprehensive Asymmetric Catalysis I, II, III*; Springer-Verlag: Berlin,

^{(2) (}a) Magid, R. M. *Tetrahedron* **1980**, *36*, 1901–1930 and references therein. (b) Meuzelaar, G. J.; Karlstrom, A. S. E.; Persson, E. S. M.; Del Villar, A.; Van Koten, G.; Bäckvall, J.-E. *Tetrahedron* **2000**, *56*, 2895–2903. (c) Bäckvall, J.-E.; Sellén, M. *J. Chem. Soc., Chem. Commun.* **1987**, 827–829. (d) Bäckvall, J.-E.; Sellén, M.; Grant, B. *J. Am. Chem. Soc.* **1990**, *112*, 6615–6621. (e) Bäckvall, J.-E.; Persson, E. S. M.; Bombrun, A. *J. Org. Chem.* **1994**, *59*, 4126–4130. (f) Persson, E. S. M.; Bäckvall, J.-E. *Acta Chem. Scand.* **1995**, *49*, 899. (g) Underliner, T. L.; Paisley, S. D.; Schmitter, J.; Lesheski, L.; Goering, H. L. *J. Org. Chem.* **1989**, *54*, 2369–2374. (h) Bartels, B.; Helmchen, G. *Chem. Commun.* **1999**, 741–742.

^{(3) (}a) Prétot, R.; Pfalz, A. Angew. Chem., Int. Ed. 1998, 37, 323–325. (b) Hayashi, T.; Kishi, K.; Yamamoto, A.; Ito, Y. Tetrahedron Lett. 1990, 31, 1743–1746. (c) Hayashi, T.; Ohno, A.; Lu, S.-j.; Matsumoto, Y.; Fukuyo, E.; Yanagi, K. J. Am. Chem. Soc. 1994, 116, 4221–4226. (d) Hayashi, T.; Kawatsura, M.; Uozumi, Y. Chem. Commun. 1997, 561–562. (e) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1998, 120, 9074–9075. (4) Reiser, O. Angew. Chem. 1993, 105, 576; Angew. Chem., Int. Ed. Engl. 1993, 32, 547–551.

⁽⁵⁾ Van Klaveren, M.; Persson, E. S. M.; Del Villar, A.; Grove, D. M.; Bäckvall, J.-E.; Van Koten, G. *Tetrahedron Lett.* **1995**, *36*, 3059–3062. (6) Dübner, F.; Knochel, P. *Tetrahedron Lett.* **2000**, *41*, 9233–9237.

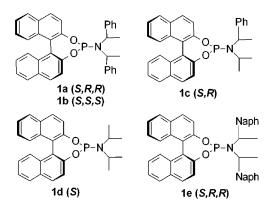


Figure 1. Phosphoramidite ligands.

selectivities in the copper-catalyzed 1,4-addition of diorganozinc compounds to cyclic and acyclic enones,⁷ cyclohexadienones,⁸ α , β -unsaturated nitro-esters,⁹ nitro-olefins,¹⁰ and cyclic 1,3-diene-epoxides¹¹ as well as in the asymmetric rhodium-catalyzed hydrogenation.¹²

The preliminary reactions were carried out with cinnamyl chloride (**2a**), diethylzinc, 1 mol % of CuBr•Me₂S, and 2 mol % of ligand **1a** in THF. The initial temperature of the alkylation was -40 °C, and upon warming to room tem-

perature 70% conversion was reached after 2 d. A 75:25 mixture of regioisomers was found with an enantiomeric excess of 17% for the $S_{\rm N}2'$ product. These observations initiated a more detailed investigation of the optimal solvent, reaction conditions, and chiral ligands.

Diglyme gave the highest ee for the allylic alkylation with 2a (Table 1, entry 8), for the various solvents examined, although the highest regioselectivity was observed using THF (Table 1, entry 4). Noncoordinating solvents such as toluene and CH_2Cl_2 showed low regioselectivity and almost no asymmetric induction for the S_N2' product (Table 1, entries 2 and 3). Among the different cinnamyl halides tested, cinnamyl bromide turned out to be the most reactive and selective starting material (Table 1, entry 12).

The allylic acetate and phosphate were not reactive under these reaction conditions even after 2 days at room temperature (Table 1, entries 9 and 10). Furthermore, a number of phosphoramidite ligands were tested in the allylic alkylation (Table 1, entries 12–16). Using ligand 1a, carrying a chiral bis[(R)-1-phenylethyl]amine moiety, and CuBr·Me₂S in the reaction of cinnamyl bromide with diethylzinc, the corresponding S_N2' product was obtained with an enantioselectivity of 64% (Table 1, entry 12). The other phosphoramidites, with different stereochemistries or different chiral amines (1b-1e), resulted in lower enantioselectivities. When the reaction was carried out at a constant low reaction

 $\textbf{Table 1.} \quad \text{Enantioselective Copper-Catalyzed Allylic Alkylation with Dialkylzincs Using Phosphoramidites } \textbf{1a-1e} \text{ as Ligands: Effect of the Solvent, Leaving Group, Ligand, and Temperature}$

entry	substrate	X	R	solvent	L*	3:4	convn ^a (%)	yield a of $\bf 3$ (%)	ee of 3 (%)
1	2a	Cl	Et	Et ₂ O	1a	47:53	100 ^b	nd	nd
2	2a	Cl	Et	toluene	1a	59:41	100	27	< 5
3	2a	Cl	Et	CH_2Cl_2	1a	62:38	100	84	< 5
4	2a	Cl	Et	THF	1a	75:25	70^b	nd	17
5	2a	Cl	Et	1,4-dioxane	1a	52:48	100	63	17
7	2a	Cl	Et	DME	1a	57:43	85^b	nd	22
8	2a	Cl	Et	diglyme	1a	57:43	90^b	57	28
9	2b	OAc	Et	diglyme	1a		0^c		
10	2c	OP(O)(OEt)2	Et	diglyme	1a		0^c		
11	2d	I	Et	diglyme	1a	66:34	90	24	63
12	2e	Br	Et	diglyme	1a	84:16	100	90	64
13	2e	Br	Et	diglyme	1b	68:32	79	70	25
14	2e	Br	Et	diglyme	1c	78:22	96	23	31
15	2e	Br	Et	diglyme	1d	73:27	98	63	12
16	2e	Br	Et	diglyme	1e	72:28	73	62	13
17	2e	Br	Et	diglyme	1a	85:15	35^d	32	77
18	2e	Br	Et	diglyme	1a	84:16	$70^{d,e}$	54	77
19	2e	Br	Me	diglyme	1a	nd	40	nd	11
20	2e	Br	Me	diglyme	1a	49:51	$44^{d,e}$	nd	24
21	2e	Br	Bu	diglyme	1a	84:16	65	nd	71

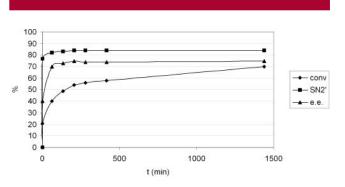
^a Determined by GC. ^b Conversion after 2 d. ^c After 18 h at −10 °C, the reaction was stirred at rt for 2 d. ^d Reaction performed at a constant temperature of −40 °C. ^e 5 mol % of catalyst was used.

1170 Org. Lett., Vol. 3, No. 8, 2001

temperature of -40 °C, an enantioselectivity of 77% was found. Using 5 mol % instead of 1 mol % of catalyst, the conversion of the starting material can be increased from 35% to 70% (Table 1, entry 18).

In addition to diethylzinc, different dialkylzincs were also used in the allylic alkylation with cinnamyl bromide. With dimethylzinc, 40% conversion was found after 18 h with no regioselectivity and 11% ee (24% ee at constant $-40\,^{\circ}\text{C})$ for the (S_N2') product (Table 1, entries 19 and 20). Dibutylzinc gives a regioselectivity similar to that of diethylzinc in this reaction with 71% ee for the (S_N2') product but with a lower conversion rate (Table 1, entry 21).

Besides CuBr•Me₂S for the in situ preparation of the catalyst, different copper(I) and copper(II) salts were also used in the allylic alkylation (Table 2). Copper(I) cyanide


Table 2. Enantioselective Copper-Catalyzed Allylic Alkylation with Cinnamyl Bromide and Diethylzinc Using Phosphoramidite **1a** as a Ligand. The Effect of the Copper(I) and Copper(II) Salts

entry	Cu salt	S _N 2':S _N 2	convn (%)	yield of 3 (%)	ee of 3 (%)
1	CuI	76: 24	41	36	62
2	CuCN	94: 6	69	nd	3
3	CuBr	79: 21	80	nd	63
4	Cu(F-acac)b	81: 19	54	50	62
5	CuBr.Me ₂ S	84: 16	100	nd	64
6	Cu(OTf)2	81: 19	51	48	64
7	$CuBr_2$	79: 21	79	75	12
8	Cu(OAc)2	79: 21	63	nd	60
9	CuOTf	85: 15	69	60	69
10^a			1		

 $[^]a$ No ligand was used in this reaction. b (F-acac) is trifluoroacetylacetate.

gives a remarkable high ratio of regioisomers, but very little enantioselectivity for the major (S_N2') product (Table 2, entry 2). The highest enantiomeric excess (69%) was observed using copper(I) triflate with a conversion of 69% within 18 h (Table 2, entry 9). Notable is the finding that $CuBr^*Me_2S$ complex gives a higher conversion than the pure Cu^IBr salt (Table 2, entries 5 and 3). Furthermore, a few experiments employing different organometallic reagents were carried out. In contrast to Grignard reagents (EtMgBr), which show no selectivity at all under these reaction conditions, EtZnCI results in a regioselectivity of 79% for the S_N2' product with an enantiomeric excess of 49%.

To establish the regio- and enantioselectivity during the progress of the allylic alkylation, the reaction of 2e with Et₂-Zn, catalyzed by CuBr·Me₂S (5 mol %)/1a (15 mol %), at constant temperature (-40 °C), was followed in time. The conversion, the relative amount of $S_{\rm N}2'$ product, and the enantiomeric excess were monitored, and the results are presented in Figure 2. The time profile of the reaction reveals

Figure 2. Time profile of the conversion, the regioselectivity, and the enantiomeric excess of the allylic alkylation.

that the reaction is fast at the beginning and slows down after 3 h. The relative amount of S_N2' product is almost constant during the reaction. A striking feature is the fact that the enantiomeric excess increased in time. Because no blank reaction occurs (Table 2, entry 10), this feature indicates that different catalytic species are present at the early stage of the reaction. The nature of the catalytic species involved is subject to a current detailed investigation.

In conclusion, we found a new enantioselective coppercatalyzed alkylation of cinnamyl bromides with dialkylzincs by applying phosphoramidites as chiral ligands. The product 3 was obtained in a good yield with enantiomeric excesses up to 77%. This is, to the best of our knowledge, the highest ee obtained in a copper-catalyzed catalytic allylic alkylation using unbranched organometallic reagents.

Acknowledgment. Financial support by the ministry of economic affairs (EET grant) is gratefully acknowledged.

OL0156289

Org. Lett., Vol. 3, No. 8, 2001

^{(7) (}a) Arnold, L. A.; Imbos, R.; Mandoli, A.; De Vries, A. H. M.; Naasz, R.; Feringa, B. L. *Tetrahedron* **2000**, *56*, 2865–2878. (b) Feringa, B. L. *Acc. Chem. Res.* **2000**, *33*, 346–353.

⁽⁸⁾ Imbos, R.; Brilman, M. H. G.; Pineschi, M.; Feringa, B. L. Org. Lett. 1999, 1, 623-625.

⁽⁹⁾ Versleijen, J. P. G.; Van Leusen, A. M.; Feringa, B. L. *Tetrahedron Lett.* **1999**, *40*, 5803–5806.

⁽¹⁰⁾ Alexakis, A.; Benhaim, C. Org. Lett. 2000, 2, 2579-2581.

⁽¹¹⁾ Badalassi, F.; Crotti, P.; Macchia, F.; Pineschi, M.; Arnold, A.; Feringa, B. L. *Tetrahedron Lett.* **1998**, *39*, 7795–7798.

⁽¹²⁾ Van den Berg, M.; Minnaard, A. J.; Schudde, E. P.; Van Esch, J.; De Vries, A. H. M.; De Vries, J. G.; Feringa, B. L. *J. Am. Chem. Soc.* **2000**, *122*, 11539–11540.

⁽¹³⁾ Typical procedure for enantioselective allylic alkylation (Table 2, entry 5): Under an argon atmosphere the phosphoramidite ligand 1a (5.4 mg, 0.01 mmol) and CuBr·Me₂S (1 mg, 0.005 mmol) were dissolved in diglyme (5 mL) and stirred for 10 min at room temperature. To the cooled solution ($-40~^{\circ}\text{C}$) was added Et₂Zn (1 M in hexane, 0.6 mL, 74 mg, 0.6 mmol). After 5 min 2e (99 mg, 0.5 mmol) was added and the reaction was allowed to warm to $-10~^{\circ}\text{C}$ over 18 h. The mixture was quenched with 1 M aqueous H₂SO₄, and the separated aqueous layer was extracted 2 times with diethyl ether. The combined organic layers were treated with brine, dried over MgSO₄, and concentrated in vacuo. After purification by column chromatography (SiO₂, diethyl ether:pentane, 1:50), the products 3 and 4 were obtained in 81% yield. The enantiomeric excess of 3 was determined by gas chromatography (chiral column Betadex 120, 30m, 0.25 mm, oven temperatre = 75 $^{\circ}\text{C}$, $t_{\rm f}(3)$ = 39.8 and 40.5 min) to be 64%.